Unit 3 Review

Machine Control

Flowcharts

A flowchart is a schematic representation of an algorithm or a process.

Control Systems

- Designed to provide consistent process control and reliability
- Control system protocols are an established set of commands or functions typically created in a computer programming
 language

Control Systems

- Open loop: no feedback used in processes
- Closed loop: feedback used in the programming to make operational and process decisions (temp, time, analog value, digital value, etc.)
- Digital: signals have 2 states: 1 (closed) or 0 (open) (Switch, phototransistor)
- Analog: data represented continuously with variable quantities (photoresistor, NTC resistor, potentiometer)

When the program starts, lamp (M1) is turned ON, and the computer checks to see if the switch (I1, wired normally closed) is being pressed. The program will loop back until the switch is pressed. When the switch is pressed, the value of variable A will be incremented by 1 . The computer will then wait 0.2 seconds before checking the value of variable A to see if it is greater than or equal to 13 . If the value of variable A is less than or equal to 12 , the program will loop back to the beginning. If variable A is greater than or equal to 13 , the lamp will turn OFF and the program will end.

Fluid Power

Fluid Power

- A system that transmits and controls energy through the use of pressurized liquid or gas
- Pneumatics - the media used is air
- Hydraulics - the media used is oil or water

Pressure acts equally everywhere!!!

4 Basic Components of Fluid Systems

1. Reservoir (Tank): Storage device which holds the fluid
2. Pump or Compressor: Device used to move fluids
3. Valves: Regulate the direction of fluid flow
4. Actuator (Cylinder): Mechanical device for moving or controlling a mechanism or system

Common Pneumatic System Components

National Fluid Power Association \& Fluid Power Distributors Association

Properties of Compressed Air

- Availability
- Easily stored in large volumes
- Simplicity in design and control
- Low system cost due to low component cost
- Environmentally friendly

Hydraulics

An area of engineering science that deals with liquid flow and pressure

A Hydraulic System

Hydraulic Fluids

- Liquid pumped through a hydraulic system
- Petroleum-based or synthetic oil
- Serve four major functions:

1. Power transmission
2. Lubrication of moving parts
3. Sealing of spaces between moving parts
4. Heat removal

- Relatively Incompressible!

Fluid Power Systems

- Transmit force over great distances
- Multiply an input force
- Increase the distance an output will move

What can Fluid Power Do ?

- Operation of system valves for air, water or chemicals
- Operation of heavy or hot doors
- Unloading of hoppers in building, steel making, mining and chemical industries
- Ramming and tamping in concrete and asphalt laying

Properties of Gases

Gases are affected by 3 variables

- Temperature (T)
- Pressure (p)
- Volume (V)

Gases have no definite volume
Gases are highly compressible
Gases are lighter than liquids

Properties of Gases
 Absolute Pressure

Gauge Pressure: Pressure on a gauge does not account for atmospheric pressure on all sides of the system
Absolute Pressure: Atmospheric pressure plus gauge pressure

Gauge Pressure + Atmospheric Pressure = Absolute Pressure

Atmospheric pressure equals $14.7 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}$
If a gauge reads 120 psi, what is the absolute pressure?
$120 \mathrm{lb} / \mathrm{in} .^{2}+14.7 \mathrm{lb} / \mathrm{in}^{2}=134.7 \mathrm{lb} / \mathrm{in}^{2}$

Absolute Temperties of Gases
$0^{\circ} \mathrm{F}$ does not represent a true 0°
Absolute Zero $=-460^{\circ} \mathrm{F}$
Absolute Temperature is measured in degrees Rankine (${ }^{\circ} \mathrm{R}$)
${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+460$

If the temperature of the air in a system is $65^{\circ} \mathrm{F}$, what is the absolute temperature?

Answer:
$65^{\circ} \mathrm{F}+460=525^{\circ} \mathrm{R}$

Boyle's Law

The volume of a gas at constant temperature varies inversely with the pressure exerted on it.

$$
p_{1}\left(\mathrm{~V}_{1}\right)=p_{2}\left(\mathrm{~V}_{2}\right)
$$

Symbol	Definition	Example Unit
V	Volume	in. 3

Boyle's Law Example

A cylinder is filled with 40 in. ${ }^{3}$ of air at a pressure of 60 psi . The cylinder is compressed to $10 \mathrm{in} .^{3}$. What is the resulting absolute pressure?
$p_{1}=60 \mathrm{lb} / \mathrm{in}^{2} \quad \mathrm{~V}_{1}=40 \mathrm{in} .^{3}$
$p_{2}=$?
$\mathrm{V}_{2}=10 \mathrm{in} .^{3}$
Convert p_{1} to absolute pressure.
$p_{1}=60 \mathrm{lb} / \mathrm{in} .^{2}+14.7 \mathrm{lb} / \mathrm{in} .^{2}=74.7 \mathrm{lb} / \mathrm{in} .^{2}$

Formula $\quad p\left(\mathrm{~V}_{1}\right)=p\left(\mathrm{~V}_{2}\right)$
Sub/Solve $74.7 \frac{\mathrm{lb}}{\mathrm{in}^{2}}\left(40 \mathrm{in} .^{3}\right)=p\left(10 \mathrm{in} .^{3}\right)$

$$
\frac{2988 \mathrm{inh} .-\mathrm{lb}}{10 \mathrm{in} .^{\beta 2}}=p_{2}
$$

Final

$$
p_{2}=298.8 \frac{\mathrm{lb}}{\mathrm{in}^{2}}
$$

Charles' Law

Volume of gas increases or decreases as the temperature increases or decreases, provided the amount of gas and pressure remain constant.

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

Note: T_{1} and T_{2} refer to absolute temperature.

Charles' Law Example

An expandable container is
filled with 28 in. ${ }^{3}$ of air and is sitting in ice water that is $32^{\circ} \mathrm{F}$. The container is removed from the icy water and is heated to $200^{\circ} \mathrm{F}$. What is the resulting volume?
$V_{1}=28 \mathrm{in}{ }^{3}$
$V_{2}=$?
$\mathrm{T}_{1}=32^{\circ} \mathrm{F}$
$\mathrm{T}_{2}=200^{\circ} \mathrm{F}$

Convert T to absolute temperature.
$\mathrm{T}_{1}=32^{\circ} \mathrm{F}+460^{\circ} \mathrm{F}=482^{\circ} \mathrm{R}$
$\mathrm{T}_{2}=200^{\circ} \mathrm{F}+460^{\circ} \mathrm{F}=660^{\circ} \mathrm{R}$

Charles' Law Example

An expandable container is
filled with 28 in. ${ }^{3}$ of air and is sitting in ice water that is $32^{\circ} \mathrm{F}$. The container is

Formula $\quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
removed from the icy water
and is heated to $200^{\circ} \mathrm{F}$. What Sub / Solve $\frac{28 \mathrm{in}^{3}}{492^{\circ} \mathrm{R}}=\frac{\mathrm{V}_{2}}{660^{\circ} \mathrm{R}}$
is the resulting volume?
$V_{1}=28 i n .^{3}$
$V_{2}=$?
$\mathrm{T}_{1}=32^{\circ} \mathrm{F}$
$\mathrm{T}_{2}=200^{\circ} \mathrm{F}$

Convert T to absolute temperature
Final
$V_{2}=37.56 \mathrm{in}^{3}{ }^{3}$
$\mathrm{T}_{1}=32^{\circ} \mathrm{F}+460^{\circ} \mathrm{F}=492^{\circ} \mathrm{R}$
$\mathrm{T}_{2}=200^{\circ} \mathrm{F}+460^{\circ} \mathrm{F}=660^{\circ} \mathrm{R}$

Gay-Lussac's Law

Absolute pressure of a gas increases or decreases as the temperature increases or decreases, provided the amount of gas and the volume remain constant.

Note: T_{1} and T_{2} refer to absolute temperature.
p^{1} and p^{2} refer to absolute pressure.

Gay-Lussac's Law Example

A 300 in. ${ }^{3}$ sealed air tank is sitting outside. In the morning the temperature inside the tank is $62^{\circ} \mathrm{F}$, and the pressure gauge reads $120 \mathrm{lb} / \mathrm{in} .^{2}$. By afternoon the temperature inside the tank is expected to be close to $90^{\circ} \mathrm{F}$. What will the absolute pressure be at that point?
$\mathrm{V}=300 \mathrm{in}^{3}$
$p_{1}=120 \mathrm{lb} / \mathrm{in} .^{2} \quad \mathrm{~T}_{2}=90^{\circ} \mathrm{F}$
$p_{2}=$?

$$
\begin{aligned}
& \mathrm{T}_{1}=62^{\circ} \mathrm{F} \\
& \mathrm{~T}_{2}=90^{\circ} \mathrm{F}
\end{aligned}
$$

$$
\text { Formula } \quad \frac{p_{1}}{\mathrm{~T}_{1}}=\frac{p_{2}}{\mathrm{~T}_{2}}
$$

Convert p to absolute pressure. $p_{1}=120 \mathrm{lb} / \mathrm{in}^{2}+14.7 \mathrm{lb} / \mathrm{in} .^{2}$
$=134.7 \mathrm{lb} / \mathrm{in}^{2}$

Convert T to absolute temperature.
Final $\quad p_{2}=141.9 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}$

$$
\begin{aligned}
& \mathrm{T}_{1}=62^{\circ} \mathrm{F}+460^{\circ} \mathrm{F}=522^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=90^{\circ} \mathrm{F}+460^{\circ} \mathrm{F}=550^{\circ} \mathrm{R}
\end{aligned}
$$

Gay-Lussac's Law Example

A 300 in. ${ }^{3}$ sealed air tank is sitting outside. In the morning the temperature inside the tank is $62^{\circ} \mathrm{F}$, and the pressure gauge reads 120 $\mathrm{lb} / \mathrm{in}^{2}$. By afternoon the temperature inside the tank is expected to be closer to $90^{\circ} \mathrm{F}$. What will the absolute pressure be at that point?

Final $\quad p_{2}=141.9 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}$

If the absolute pressure is $141.9 \mathrm{lb} / \mathrm{in} .^{2}$, what is the pressure reading at the gauge?
$141.9 \mathrm{lb} / \mathrm{in} .^{2}-14.7 \mathrm{lb} / \mathrm{in} .^{2}=127.2 \mathrm{lb} / \mathrm{in} .^{2}$

Pascal's Law

Pressure exerted by a confined fluid acts undiminished equally in all directions.

Presssure: The force per unit area exerted by a fluid against a surface

$p=\frac{\mathrm{F}}{\mathrm{A}}$

Symbol	Definition	Example Unit
P	Pressure	$\mathrm{lb} / \mathrm{in.}^{2}$
F	Force	lb
A	Area	$\mathrm{in.}^{2}$

In hydrostatic systems: P1 = P2 or F1/A1 = F2/A2

Pascal's Law Example

How much pressure can be produced with a 3 in. diameter (d) cylinder and 50 lb of force?

$$
\begin{aligned}
& \mathrm{F}=50 \mathrm{lb} \\
& \mathrm{~d}=3 \mathrm{in} . \\
& \mathrm{F}=50 \mathrm{lb}
\end{aligned} \quad \mathrm{~A}=?
$$

Formula $\quad \mathrm{A}=\pi \mathrm{r}^{2}$
prmula $\quad p=\frac{\mathrm{F}}{\mathrm{A}}$
Sub / Solve
$\mathrm{d}=3 \mathrm{in}$.

$$
p=\frac{50 \mathrm{lb}}{7.1 \mathrm{in.}^{2}}
$$

$$
p=7.0 \frac{\mathrm{lb}}{\mathrm{in}^{2}{ }^{2}}
$$

Application of Pascal's Law in a Simple Hydrostatic System

How much force must you exert on piston A to lift a load on piston B of 500 lbs ? What is the ideal mechanical advantage of this system?

Hydrostatic system: P1 = P2

$$
\begin{aligned}
P=\frac{F}{A} \quad P 1=P 2 \quad & \frac{F 1}{A 1}=\frac{F 2}{A 2} \\
& \frac{F 1}{1 \mathrm{in}^{\wedge} 2}=\frac{500 \mathrm{lbs}}{500 \mathrm{in} 2}
\end{aligned}
$$

$$
\mathrm{F} 1=1 \mathrm{lb}
$$

Additional Examples

1. I have a car lift with a $12^{\prime \prime}$ radius. How heavy a car can I lift if a 3 Lb force is applied to a piston with a $1^{\prime \prime}$ radius?
2. I have a gas with a pressure of 53 kPa at a temperature of $47^{\circ} \mathrm{C}$. I heat the gas an additional 200 degrees. What will the new pressure be if the volume is constant?
3. I have a car lift with a $12^{\prime \prime}$ radius. How heavy a car can I lift if a 3 Lb force is applied to a piston with a 1 " radius? Hydrostatic system

$$
P=\frac{F}{A} \quad P 1=P 2
$$

$$
\begin{aligned}
& \mathrm{P} 1=\underset{\mathrm{pi}^{*} 1^{\prime \prime} * 1^{\prime \prime}}{=3 \mathrm{lb}} \quad \mathrm{P} 2=\frac{\mathrm{X}}{\mathrm{pi}^{*} 12^{\prime \prime *} 12^{\prime \prime}} \\
& \mathrm{X}=\frac{3 \mathrm{lb} * \mathrm{pi}^{*} 12^{\prime \prime} * 12^{\prime \prime}}{\mathrm{pi}^{\prime *} 1^{\prime \prime *} 1^{\prime \prime}}=432 \mathrm{lb}
\end{aligned}
$$

2. I have a gas with a pressure of 53 kPa at a temperature of $47^{\circ} \mathrm{C}$. I heat the gas an additional 200 degrees. What will the new pressure be if the volume is constant?

$$
\begin{array}{ll}
\frac{\mathrm{P} 1 * \mathrm{~V} 1}{\mathrm{~T} 1}=\frac{\mathrm{P} 2 * \mathrm{~V} 2}{\mathrm{~T} 2} & \begin{array}{l}
\mathrm{T} 1=47+273=320 \\
\mathrm{~T} 2=200+320=520
\end{array} \\
\frac{53 \mathrm{kPa}}{320}=\frac{\mathrm{P} 2}{520} & \mathrm{P} 2=\frac{520 * 53 \mathrm{kPa}}{320}
\end{array}
$$

Watch additional heating versus heating to a certain temperature. If the problem said I heat the gas to 200 degrees, then $\mathrm{T} 2=200+273=473$ degrees.

