State Machine Design

State Machine Design

This presentation will

- Define a state machine.
- Provide several examples of everyday items that are controlled by state machines.
- Illustrate the block diagram for a state machine.
- Review the design steps in the state machine design process.
- Provide an example of a simple state machine design.

Definition of a State Machine

State Machine

A synchronous sequential circuit, consisting of a sequential logic section and a combinational logic section, whose outputs and internal flip-flops progress through a predictable sequence of states in response to a clock and other input signals.*

Examples of State Machines

Many everyday devices are controlled by state machines.

Traffic Light

Garage Door Numeric Keypad

Vending Machine

State Machine Block Diagram

State Machine Design Steps

- 1. Create State Graph
- 2. Determine State Variables and Assign
- 3. Encode Outputs to States
- 4. Create State Transition Table
- 5. Write and Simplify Design Equations
- 6. Design Circuit

Anatomy of a State Graph

State Machine Design Example

Example:

Design a state machine that will count out the last four digits of the phone number 585-476-4691.

In addition to the clock input, this design has a second input called Enable (EN). Whenever the Enable is a logic (1), the outputs will continuously cycle through the four values 4,6,9,1. Whenever the Enable is a logic (0), the outputs will hold at their current values.

For this design any form of combinational logic may be used, but the sequential logic must be limited to D flip-flops.

Step #1: Create State Graph

Step #2: Determine State Variables and Assign

Step #3: Encode Outputs to States

Step #3: Create State Transition Table

State	Inputs				Outputs							
	Present State		Input	State	Next State		F/F Inputs		Encoded Outputs			
	Qa	Qb	EN		Qa*	Qb*	Da	Db	C3	C2	C1	C0
S0	0	0	0	S0	0	0	0	0	0	1	0	0
S0	0	0	1	S1	0	1	0	1	0	1	0	0
S1	0	1	0	S1	0	1	0	1	0	1	1	0
S1	0	1	1	S2	1	0	1	0	0	1	1	0
S2	1	0	0	S2	1	0	1	0	1	0	0	1
S2	1	0	1	S3	1	1	1	1	1	0	0	1
S3	1	1	0	S3	1	1	1	1	0	0	0	1
S3	1	1	1	S0	0	0	0	0	0	0	0	1

Step #4: Write and Simplify Design Equations

Da = Qa Qb EN + Qa Qb EN + Qa Qb EN + Qa Qb EN

 $Da = \overline{Qa} Qb EN + Qa \overline{EN} + Qa \overline{Qb}$

 $Db = \overline{Qa} \,\overline{Qb} \, EN + \overline{Qa} \, Qb \,\overline{EN} + Qa \,\overline{Qb} \, EN + Qa \, Qb \,\overline{EN}$ $Db = Qb \,\overline{EN} + \overline{Qb} \, EN$ $Db = Qb \oplus EN$

 $C3 = Qa \overline{Qb} \overline{EN} + Qa \overline{Qb} EN = Qa \overline{Qb}$ $C2 = \overline{Qa} \overline{Qb} \overline{EN} + \overline{Qa} \overline{Qb} EN + \overline{Qa} Qb \overline{EN} + \overline{Qa} Qb EN = \overline{Qa}$ $C1 = \overline{Qa} Qb \overline{EN} + \overline{Qa} Qb EN = \overline{Qa} Qb$ $C0 = Qa \overline{Qb} \overline{EN} + Qa \overline{Qb} EN + Qa Qb \overline{EN} + Qa Qb EN = Qa$

Step #5: Circuit Design

Block Diagram / Schematic

